Ex-vesselでの燃料溶融および凝固
事故時においてRPV下部プレナムにスランピングした燃料デブリが再溶融し、下部ヘッドを破損させた場合、RPVからペデスタルへ燃料デブリが移行する。1Fのペデスタル部では玄武岩系(シリカ系)コンクリートが使用されており、落下した溶融燃料とコンクリートの高温反応(Molten Core Concreate Interaction; MCCI)を起こすと想定されている。MCCIの進行に影響する因子としては、コンクリートの材質、移行してきた燃料デブリの組成(特に、平均的な酸化度や金属成分が含まれるかどうか)、デブリ温度(比較的温度の低いデブリが崩落する場合には、MCCIが進行しない可能性が考えられる(内部調査結果:2号機、3号機)リンク、3号機まだ)、また、デブリの特性には、冷却条件(徐冷or急冷)も影響する。
Ex-vessel debrisの凝固 に関する 熱力学解析
シリカ系コンクリートと溶融コリウムの間でMCCIが発生したと仮定し、熱力学計算ソフトThermo-calcを使用し、Ex-vessel debris凝固時の析出相の同定と成分偏析の解析を実施した。データベースはOECD/NEAの国際汎用熱力学データベースTAF-ID[1]を使用した。
シリカ系コンクリート、PWR条件でのコリウムのケース(CEA 模擬試験条件)
仏国CEAで行われた、シリカ系コンクリートとPWR条件を想定した模擬コリウムを用いたEx-vessel debrisの凝固試験[2]を参考に、凝固時の相析出挙動(凝固パス)の解析を実施した[3]。 本項目の論文は現在執筆中、参考文献
Corium 1 | Corium 2 | |
---|---|---|
Al | 1.2 | 1.0 |
Ca | 18.8 | 4.8 |
Si | 13.3 | 26.3 |
U | 3.7 | 1.4 |
Zr | 2.8 | 1.6 |
O | 60.2 | 64.9 |
- CEA試験概要
- - 試験条件
- CEA試験の模擬コリウム組成(表X1)
- 模擬燃料デブリ(PWR条件):UO2-ZrO2の混合酸化物
- コンクリート:SiO2-Al2O3-CaOの混合物。Corium1:石灰岩(Caリッチ)コンクリート。Corium2:シリカ系(Siリッチ)コンクリート。
- 最高到達温度:2500℃
- CEA試験の模擬コリウム組成(表X1)
- - 試験結果
- Caリッチデブリ:Corium1(図X2、表X2)
- 母相:Ca、Siガラス(黒色)
- 析出相1:(U,Zr,Ca)O2のデンドライト(白色)
- 析出相2:珪酸塩化合物(灰色)
- Caリッチデブリ:Corium1(図X2、表X2)
- Siリッチデブリ:Corium2(図X3、表X3)
- 試験では、コリウムが2層に成層化した。それぞれの領域において、母相と析出相が逆になっていることが観察されている。EDS分析では模擬デブリが脆く測定が困難であったため、領域1のみが分析された。
- 領域1
- 母 相:(U,Zr,Ca)O2(白色)
- 析出相1:SiO2の球状晶(黒色)
- 析出相2:Si化合物(灰色)
- 領域2(組織観察結果のみ)
- 母相:おそらくSiガラス相(黒色)
- 析出相1:おそらくU,Zr酸化物(白色)
- 析出相2:おそらくSi化合物(灰色)
- Siリッチデブリ:Corium2(図X3、表X3)
図X2:BSE像(Corium11:Caリッチ)[2]
- EDS result C1.png.png
表X2:EDS分析結果(Corium1:Caリッチ)[2]
図X3:BSE像(Corium2:Siリッチ)[2]
表X3:EDS分析結果(Corium2:Siリッチ)[2]
- 熱力学解析による凝固パス概要
- Caリッチデブリ:Corium1(図X4、X5)
- U,Zr酸化物(一部Caが固溶):(Zr,U,Ca)O2が析出(約2160℃) → Uリッチ or Zrリッチの酸化物に相分離(約1470℃以下)
- 珪酸塩(ジルコン):Ca2SiO4が析出(約1470℃)
- コンクリート成分化合物:Si化合物orガラスが析出
- まずU,Zr酸化物がデンドライトとして析出し、続いて1450℃程度で珪酸塩が析出、残存液相部がガラスとして母相になったと考えると試験結果と整合する。
- Siリッチデブリ:Corium2(図X6、X7)
- 高温で液相が2相に分離:Uリッチ液相+Zrリッチ液相
- Uリッチ液相
- Siガラス相:SiO2単体が析出(約1450℃)
- U,Zr酸化物:(U,Zr)O2が析出(約1380℃)
- Si化合物(珪酸塩)析出
- Zrリッチ液相
- Zr酸化物(一部U,Caが固溶):(Zr,U,Ca)O2が析出(約1930℃) → ジルコン:ZrSiO4が析出(1590℃)、Uが分離
- 残存液相部がUリッチ液相と同様の析出挙動:Si化合物orコンクリート成分ガラス(Al,Ca,Si)が析出
- 解析結果では、高温で液相が2相分離する結果となった。Uリッチ液相はまずSiO2が析出し、その後にU,Zr酸化物+Si化合物が墓相として析出。一方で、Zrリッチ液相ではまずZr酸化物が析出し、Si化合物、母相としてガラスが析出すると予測される。分離した各液相で凝固パス(析出相と母相の順番)が逆になっており、それぞれ試験結果の2層領域に対応していると考えられる。つまり、試験においても溶融時に液相で2相分離を起こしたと考えられ、密度の重いUリッチ液相が下部に(領域1)、Zrリッチ液相が上部(領域2)に成層化し凝固したと考えられる。また、解析結果と試験結果において各領域での相状態(析出相と母相)の整合性が確認できる。
BWR条件でのコリウムの解析(1F条件)
wt% | |
---|---|
UO2 | 78.4 |
ZrO2 | 21.6 |
1F事故で予測されるコリウム組成において、凝固時の相析出挙動(凝固パス)の解析を実施した。
- コリウム組成
- 模擬燃料コリウム(表X4):UO2-ZrO2の混合酸化物(重量比約 4:1)
- コンクリート(表X5):SiO2-Al2O3-CaOの混合物(重量比約 20:5:4) = Siリッチコンクリート
wt% | |
---|---|
Al2O3 | 17.0 |
CaO | 14.1 |
SiO2 | 68.9 |
- 解析結果(コンクリート:燃料コリウム=5:5)
- 解析結果による凝固パス概要(図X8,9)
- 高温で液相が2相に分離:Zrリッチ液相+Siリッチ液相
- Zrリッチ液相 → U,Zr酸化物(一部Caが固溶) (約1960℃)
- Siリッチ液相 → Si化合物(ジルコン等珪酸塩) (約1430℃以下)
- コンクリート成分ガラス(Al,Ca,Si) (母相)
- 1F条件では、高温では液相が2相に分離:Zrリッチ+Siリッチする計算結果となった。Zrリッチ液相は、約2000℃程でZr酸化物(U固溶)で凝固し、さらに温度が下がるとジルコン+U,Zr酸化物に分離、という凝固パスを経る。この際、ジルコンが多く(U,Zr酸化物と同量以上に)析出すると考えられる。一方で、Siリッチ液相では、比較的低温まで液相状態が維持され、約1350℃以下からSiO2及びSi化合物が析出 or ガラスとして析出して母相となると考えられる。
既往知見
模擬試験
過去の模擬試験を参照。(追記予定)
フランス・CEAでは、大型のMCCI試験装置(VULCANO: Versatile UO2 Lab for Corium ANalysis and Observation)を用いてMCCIに伴うコンクリートの浸食挙動が調べられてきた。これとともに、試験で生成したMCCI生成物の性状等が調べられている。
この試験シリーズのひとつである「VBS-U4試験」では、UO2/ZrO2比やコンクリート組成等が1F1号機の想定に比較的近い条件であり、溶融させたUO2-ZrO2-SiO2酸化物と溶融させたステンレス鋼を、シリカ質コンクリートに流し込むことでMCCIを引き起こしている。組織観察の結果、溶融プール層:(U,Zr)O2-x; (Zr,U)O2-x; 結晶質シリカ;珪酸ガラス、金属層:未酸化のステンレス(Fe-Ce-Ni)、が形成された。また、デブリとコンクリートとの境界付近において、高Uジルコン(Zr,U)SiO4の形成も確認された。[4]
また、コンクリートの浸食自体は少ないものの、底部注水による急冷条件のもと「VW-U1試験」が実施された。この試験では、底部にポーラス状コンクリートを配置し、MCCI開始後にポーラス状コンクリートへの注水によりデブリの急冷を行っている。組織観察の結果、サンプルの採取箇所によらずデブリの微細構造はおおよそ共通しており、Siリッチなマトリックス中にUリッチな(U,Zr)O2やZrリッチな(Zr,U)O2が析出する構造であった。上述のVBS-U4試験で生成した結晶質シリカや高Uジルコンの形成は認められず、急冷とそれに伴うコンクリート浸食の抑制がこれらの相の形成に影響したものと推定された。[5]
2017年度には、1Fで想定される材料組成やコンクリート浸食程度などを考慮した大型MCCI試験である「VF-U1試験」が行われた。組織観察の結果、炉心材料(UO2, Zr, ZrO2, ステンレス鋼)がコンクリートと反応した後の溶融プール部は,コンクリート由来のSi, Ca, Alや燃料由来のU, Zrを多く含む酸化物相と,ステンレス鋼由来のFeを多く含む金属相に分かれることが分かった。各相の特徴は以下の通り。[6][7]
- 酸化物相は,Si, Ca, Al濃度の高いマトリックス中に,U-Zr酸化物の粒子やFe-Cr酸化物の粒子が析出する構造をとり,同様の構造が溶融プール内に広くみられる。
- 金属相は,主にFe-Ni系の合金で,Cr濃度は初期の材料として投入したステンレス鋼のCr濃度よりも低い。主に,溶融プールの底部(コンクリートとの境界部)に塊として存在。
実際の1Fにおいては落下してきたデブリ性状や冷却条件によるが、上記模擬試験のように成層化、相分離が発生している可能性がある。
チェルノブイリLava
チェルノブイリ原子力発電所事故を参照。
チェルノブイリ原子力発電所事故で発生したデブリは、溶融した燃料が蛇紋岩コンクリートと反応したものであり、主に褐色デブリ(Brown lava)と黒色デブリ(Black lava)の2種類が発見されている。双方ともにメインマトリクスは珪酸塩ガラスであり、その組成もほぼ同様である。一方で、ガラス相以外の析出物においては褐色デブリの方がU濃度が高くなっている。チェルノブイリでのデブリ生成条件は1Fと異なるが、これらのデブリはMCCIが長時間継続され形成されたものであり、1Fにおいてもペデスタルに移行したデブリが徐冷されていた場合には、複数の性状のデブリが形成・成層化している可能性がある。
Ex-vessel debrisの予測される特徴
- コンクリート成分が混入することで、固相と液相が共存する温度域(液相線温度:全て溶融 ⇔ 固相線温度:全て凝固)の温度差が約700-800℃に拡大する。固相と液相の比重差により、泥水のような状態になり、層分離が起こる可能性がある。チェルノブイリのデブリ:Brawn/Black LAVA
- 高温で液相が2相に分離(U,Zリッチ ⇔ Siリッチ)し、これら液相間の比重差により層分離する可能性がある。この場合、各層では凝固パス(析出相、母相)が逆転するなど異なると考えられる。CEA模擬試験
- 主要構成組織は以下の3つに区別できる。
- - U,Zr酸化物:(U,Zr)O2 Fluorite, Tetragonal
- - Si化合物:(Zr,U)SiO4
- - コンクリートガラス:SiO2 + Al,Ca成分
- ペデスタルへ移行してきた燃料デブリ中に金属成分が含まれる場合、デブリ下部に密度の高い金属層が形成される可能性がある。
関連項目
参考文献
- ↑ Thermodynamics of Advanced Fuels – International Database, OECD/NEA : https://www.oecd-nea.org/science/taf-id/
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 A. Quaini, C. Journeau, S. Gosse, T. Alpettaz, E. Brackx, R. Domenger, A. Chocard, F. Hodaj, "Experimental contribution to the corium thermodynamic modelling – the U-Zr-Al-Ca-Si-O system", Annals of Nuclear Energy, 93, 43-49 (2016). http://dx.doi.org/10.1016/j.anucene.2016.01.043
- ↑ T. Sato et al. (2020), to be submitted
- ↑ 4.0 4.1 4.2 T. Kitagaki, H. Ikeuchi, K. Yano, J.H. Haquet, L. Brissonneau, B. Tormos, P. Piluso and T. Washiya, "Characterization of the VULCANO test products for fuel debris removal from the Fukushima Daiichi Nuclear Power Plant", Prog. Nucl. Sci. and tech. 5, 217-220 (2018). http://dx.doi.org/10.15669/pnst.5.217
- ↑ T. Kitagaki, H. Ikeuchi, K. Yano, L. Brissonneau, B. Tormos, R. Domenger, J. Roger and T. Washiya, "Effect of quenching on molten core-concrete interaction product", J. Nucl. Sci. Technol. 56, 904-914 (2019). https://doi.org/10.1080/00223131.2019.1604272
- ↑ A. Nakayoshi, H. Ikeuchi, T. Kitagaki, T. Washiya, V. Bouyer, C. Journeau, P. Piluso, E. Excoffier, C. David, V. Testud, "Knowledge obtained from dismantling of large-scale MCCI Experiment products for decommissioning of Fukushima daiichi nuclear power station", Proc. of International Topical Workshop on Fukushima Decommissioning Research, Naraha, Fukushima, Japan, 24-26, May, 2019.
- ↑ L. Brissonneau, H. Ikeuchi, P. Piluso, J. Gousseau, C. David, V. Testud, V. Bouyer, T. Kitagaki, A. Nakayoshi, S. Dubois, T. Washiya, "Material characterization of the VULCANO corium concrete interaction test with concrete representative of Fukushima Daiichi Nuclear Plants.", J. Nucl. Mater. 528, 151860 (2020). https://doi.org/10.1016/j.jnucmat.2019.151860
- ↑ 8.0 8.1 B.E. Burakov, "Material study of Chernobyl “lava” and “hot” particles”, International Experts", Meeting on Decommissioning and Remediation after a Nuclear Accident Vienna, Austria (2013). http://www-pub.iaea.org/iaeameetings/IEM4/30Jan/Burakov.pdf