「デブリ取り出しツール」の版間の差分
Kurata Masaki (トーク | 投稿記録) |
Kurata Masaki (トーク | 投稿記録) |
||
3行目: | 3行目: | ||
=== コアボーリングマシン === | === コアボーリングマシン === | ||
'''コアボーリングマシン'''の概念図を'''図1'''に示す。高線量下で使用可能で、経済的にも合理的、という観点で、コアボーリングシステムについて、アイダホ国立研究所でモックアップ試験が行われた。モックアップ試験では、ジルカロイ被覆でSiO<small><sub>2</sub></small>ペレットからなる模擬燃料棒、インコネル製のスペーサーグリッド、ステンレス製の端栓、コンクリートブロック、砂利、アルミナ板などが用いられた。モックアップ試験に基づいて、ドリルの先端やカッターが選定された。[1] | |||
=== プラズマアーク切断機 === | === プラズマアーク切断機 === | ||
'''プラズマアーク切断機'''の概念図を'''図2'''に示す。この装置は、'''炉心下部構造物'''(LCSA: Lower Core Support Assembly)の切断/解体に用いられた。プラズマアーク切断法は、様々な切断方法(ウォータージェット、シャーリング、アークソー、酸素燃焼、超音波破断、レーザー切断など)の中から選定され、デブリ取り出し初期に、炉心上部格子や端栓の解体に利用されていた。LCSAは、約1年かけて約50個のパーツに解体された。解体作業自体は短時間であったが、システムの不具合や設計変更に時間を要した。 | |||
プラズマアーク切断機では、トーチの焼け付きの他に、電気系統、シール、などのトラブルが発生した。およそ10回の切断に1回の割合でトーチが焼け付き、交換が必要となった。これは、ホウ酸水の電導性がよいために発生した。焼き付きのたびに、装置をSWPまで引き上げ、交換/整備する必要があった。構造物に燃料デブリが固着している個所では、プラズマアークでの切断は困難であった。トーチの振動や汚染も課題であった。また、アーク溶融による切断の副生成物として、核燃料物質の蒸発、Kr-85の放出、CO発生、水素発生、NOx発生、Niカルボニール蒸発等が課題となった。特に窒素酸化物が多く発生しその処理が重要課題となった。これらのうち、Kr-85以外は、SWPに取り付けたオフガス処理系で回収した。凝集性のガス成分は、圧力容器内の冷却水中に戻した。Kr-85については環境に放出するオフガスをモニターする必要があった。[1] | |||
=== 真空吸引システム、エアリフト === | |||
'''エアリフト'''の概念図を'''図3'''に示す。燃料デブリを真空吸引システム、あるいは、エアリフト内に吸入するためには、1.5-3.0 m/sの冷却水の吸引流速が必要であった。吸引ノズル先端とデブリとの距離を、ノズル径よりも近くすると、燃料デブリを効率的に吸引できた。エアリフトにおける大きな課題は、透明度の喪失と、小サイズから中程度のサイズの粒子が、圧力容器内の様々な水平方向の面で移動して再分布することであった。これらの課題は、冷却水処理系のフィルターを改良することで、回収時間を4時間から2時間に短縮する程度に、若干改善された。類似作業の際には、すべてのタイプの粒子を同一シリーズのフィルター装置で回収していたが、条件によっては、追加フィルターを取り付けることで、燃料回収が効率化した可能性があることが指摘されている。 | |||
'''エアリフトシステム'''(ALS: Air-lift system)を使うことで、上部ルースベッドや下部ヘッド堆積物から、何トンもの燃料デブリが効率的に回収されている。燃料デブリと冷却水と空気を分離する技術により、デブリバケツ中にデブリが効率的に回収され、収納缶に挿入された。ALSにより、圧搾空気を用いて、LCSAの下に堆積していた燃料デブリ(酸化物系の瓦礫)も、効率的に、デブリバケツ内に移送された。バケツ内や収納缶内では、重力沈降により、燃料デブリ成分と冷却水や空気が分離された。駆動部分の信頼性が十分でなかったため、アイダホ国立研究所で、鉛の削りくず、2.5cm角の塊、いろいろなサイズの粒子、1cm径のステンレス配管を2-5cmくらいに切ったもの、を入れたタンクの底に、LCSAのモックアップを設置して、ALSのフルスケールモックアップ試験が行われた。モックアップ試験により、最低でも230kg/mの処理速度で、模擬燃料デブリがデブリバケツ内に移送できることが確認された。[1] | |||
=== 収納缶(キャニスター) === | |||
'''設計の過程''' | |||
収納缶は、0.5ミクロンの微粒子から、燃料集合体の断面サイズまでの燃料デブリを回収できるように設計された。また、収納缶は、輸送キャスクを用いた構外輸送や、燃料デブリの長期保管のための、密封容器の役割も果たすように設計された。3タイプの収納缶が設計製作された('''図4''')。[1] | |||
* Fuel canister: 大きな塊状デブリを直接回収、あるいは、別の小さな容器に回収した後で収納 | |||
* Knockout canister: 真空吸引システムにより、140ミクロンから燃料ペレット程度のサイズの粒子状デブリを回収し収納 | |||
* Filter canister: 真空吸引システムにより、Knockout canisterを通過した微粒子、水質浄化系を通過した微粒子、収納缶の脱水系を通過した微粒子、などを回収し収納 | |||
収納缶の設計は、輸送や取り出し工程にも影響した。主要な設計因子は、臨界安全性、構造強度、冷却水の放射線分解、圧力容器内での取り扱い容易性、燃料移送系や輸送キャスクにおけるサイズや重量の制限、INELでの貯蔵プールでの重量制限、収納缶のベント、であった。また、複数の単一目的の収納缶を設計するか、単一の多目的収納缶を設計するかが検討され、前者が選定された。NRCの輸送ライセンスに適合することも必要であった。 | |||
収納缶の設計では、当初の設計要求の外径13.35インチ(約32.5cm)から、14インチ(約34.3cm)に増やすことが検討された。これは、ホウ素遮蔽板の既製品サイズが14インチであったためだが、14インチ径では収納缶の水平断面が大きすぎ、取り扱いが難しくなるため、結局13.35インチに再設計された。しかし、小さい径の収納缶では、Knockout canisterの使用時に、流速を大きくする必要があり、小さい粒子の回収率が低下したのではないかと報告された。また、形状の歪んだデブリや上部端栓の回収には、収納缶の内径がもう少し大きい方がよかったと報告されている。いくつかの上部端栓は、小分けするのが難しく、収納缶ではなく、貯蔵用のドラムに収納された。 | |||
燃料デブリ取り出しにおける重要なレッスンとして、次第に明らかになってくる内部の状況に基づいて設計の自由度を確保することと、設計や安全評価に必要となるリードタイムの間のジレンマが指摘されている。収納缶についても、内部調査や、実際の使用経験に基づく、いくつかの改良が有効であった。1981年9月には、フルサイズの燃料集合体を格納できる収納缶が設計された。しかし、1983年8月の上部空洞ソナー調査とマッピングにより、フルスケールの燃料集合体はほとんど残留していないことが明らかになった。このことから、約4.3mのフルサイズ燃料集合体を収納できる当初の設計から、すでに承認されているM-130タイプの鉄道輸送キャスクを用いた経済的な構外輸送に適した、約3.3m長への設計変更が検討された。1984年6月に決定した仕様書では、収納缶の全長は約3.7mに増やされた。これは収納缶の製作業者に指定された最大長さに相当した。収納缶長を短くすることで、取り扱い性は向上したと報告されている。また、さらに全長を半分に縮めた収納缶も検討されたが、充填される重量の観点で実現されなかった。 | |||
'''収納缶の重量測定''' | |||
3タイプの収納缶に、圧力容器内で燃料デブリを充填した後の重量測定が大きな課題となった。アイダホ国立研究所の収納缶貯蔵プールの制限により、乾燥重量として輸送できる収納缶一体の重量は約1270kg(2800ポンド)が上限であった。圧力容器内での正確な重量測定にはいくつもの課題があった。デブリの密度が大きくばらついている可能性、重量測定中の圧力容器内の運転条件、収納缶高さ位置が数段階で異なること、収納缶を取り付けたカルーセルが回転すること、など。以下の重量測定方法が採用された。 | |||
* Fuel canister: 収納缶をつかんで引き上げるツールを用いて、建屋クレーンで吊り下げて、必要に応じて重量測定。Fuel canisterはデブリ収納作業中に上部が開放されており、運転員は、収納缶内部の充填率を目視しつつ作業できた。したがって、重量測定は、収納缶ごとに1-2回で充分であった。 | |||
* Knockout canister: 真空吸引作業中に、knockout canister 接続モジュールを用いて重量測定された。このモジュールは、SWPの下面に取り付けられていた。 | |||
* Filter cvanister: 真空吸引作業中に、Filter canister重量測定システムを用いて、連続的に重量測定された。このシステムも、SWPから吊り下げられていた。 | |||
* 脱水後の収納缶: 3タイプの収納缶ともに、脱水処理された後に、再度重量測定が行われた。収納缶内部の脱水処理前後で、輸送トロリーによって冷却水から引き揚げ、ロードセルにより、測定誤差約15kg(35ポンド)で重量測定された。 | |||
'''収納缶の除染''' | |||
収納缶の外面線量は極めて高く、TMI-2サイト内での手作業でのスメアは不可能であった。 | |||
Measures at TMI-2. In the fuel handling building at TMI-2, a decontamination spray ring with borated hot water was used to clean the loaded canister as it was being lifted from the spent fuel pool to be transferred to the shipping cask. The licensee conducted several experiments with an empty canister to improve the decontamination procedures. These included: (●) a high-pressure water spray ring system, which failed by a factor of 50 to meet the INEL criteria; (●) multiple soakings of a canister in hydrogen peroxide solutions followed by hydrogen peroxide solution spraying and hand wiping, which indicated that another factor of two for decontamination would be required; (●) hand wiping and cleaning with a bristle brush, which showed that hand wiping was the most effective but still did not meet the requirements; and (●) using a decontamination spray ring with cold water and heated water, which showed that heated water was best and came closest to meeting the requirements. o Measures at INEL. INEL was able to use the hot shop overhead manipulator to take smears of the external surface of a canister remotely as each was removed from a cask. INEL provided feedback on surface contamination levels for the licensee to improve its decontamination process. The problem was never completely eliminated but was significantly improved by the licensee’s efforts. | |||
== 参考文献 == | == 参考文献 == |
2024年6月13日 (木) 11:25時点における版
ここでは、TMI-2事故炉からの燃料デブリ取り出しに用いられた様々なツールについてまとめる。
コアボーリングマシン
コアボーリングマシンの概念図を図1に示す。高線量下で使用可能で、経済的にも合理的、という観点で、コアボーリングシステムについて、アイダホ国立研究所でモックアップ試験が行われた。モックアップ試験では、ジルカロイ被覆でSiO2ペレットからなる模擬燃料棒、インコネル製のスペーサーグリッド、ステンレス製の端栓、コンクリートブロック、砂利、アルミナ板などが用いられた。モックアップ試験に基づいて、ドリルの先端やカッターが選定された。[1]
プラズマアーク切断機
プラズマアーク切断機の概念図を図2に示す。この装置は、炉心下部構造物(LCSA: Lower Core Support Assembly)の切断/解体に用いられた。プラズマアーク切断法は、様々な切断方法(ウォータージェット、シャーリング、アークソー、酸素燃焼、超音波破断、レーザー切断など)の中から選定され、デブリ取り出し初期に、炉心上部格子や端栓の解体に利用されていた。LCSAは、約1年かけて約50個のパーツに解体された。解体作業自体は短時間であったが、システムの不具合や設計変更に時間を要した。
プラズマアーク切断機では、トーチの焼け付きの他に、電気系統、シール、などのトラブルが発生した。およそ10回の切断に1回の割合でトーチが焼け付き、交換が必要となった。これは、ホウ酸水の電導性がよいために発生した。焼き付きのたびに、装置をSWPまで引き上げ、交換/整備する必要があった。構造物に燃料デブリが固着している個所では、プラズマアークでの切断は困難であった。トーチの振動や汚染も課題であった。また、アーク溶融による切断の副生成物として、核燃料物質の蒸発、Kr-85の放出、CO発生、水素発生、NOx発生、Niカルボニール蒸発等が課題となった。特に窒素酸化物が多く発生しその処理が重要課題となった。これらのうち、Kr-85以外は、SWPに取り付けたオフガス処理系で回収した。凝集性のガス成分は、圧力容器内の冷却水中に戻した。Kr-85については環境に放出するオフガスをモニターする必要があった。[1]
真空吸引システム、エアリフト
エアリフトの概念図を図3に示す。燃料デブリを真空吸引システム、あるいは、エアリフト内に吸入するためには、1.5-3.0 m/sの冷却水の吸引流速が必要であった。吸引ノズル先端とデブリとの距離を、ノズル径よりも近くすると、燃料デブリを効率的に吸引できた。エアリフトにおける大きな課題は、透明度の喪失と、小サイズから中程度のサイズの粒子が、圧力容器内の様々な水平方向の面で移動して再分布することであった。これらの課題は、冷却水処理系のフィルターを改良することで、回収時間を4時間から2時間に短縮する程度に、若干改善された。類似作業の際には、すべてのタイプの粒子を同一シリーズのフィルター装置で回収していたが、条件によっては、追加フィルターを取り付けることで、燃料回収が効率化した可能性があることが指摘されている。
エアリフトシステム(ALS: Air-lift system)を使うことで、上部ルースベッドや下部ヘッド堆積物から、何トンもの燃料デブリが効率的に回収されている。燃料デブリと冷却水と空気を分離する技術により、デブリバケツ中にデブリが効率的に回収され、収納缶に挿入された。ALSにより、圧搾空気を用いて、LCSAの下に堆積していた燃料デブリ(酸化物系の瓦礫)も、効率的に、デブリバケツ内に移送された。バケツ内や収納缶内では、重力沈降により、燃料デブリ成分と冷却水や空気が分離された。駆動部分の信頼性が十分でなかったため、アイダホ国立研究所で、鉛の削りくず、2.5cm角の塊、いろいろなサイズの粒子、1cm径のステンレス配管を2-5cmくらいに切ったもの、を入れたタンクの底に、LCSAのモックアップを設置して、ALSのフルスケールモックアップ試験が行われた。モックアップ試験により、最低でも230kg/mの処理速度で、模擬燃料デブリがデブリバケツ内に移送できることが確認された。[1]
収納缶(キャニスター)
設計の過程
収納缶は、0.5ミクロンの微粒子から、燃料集合体の断面サイズまでの燃料デブリを回収できるように設計された。また、収納缶は、輸送キャスクを用いた構外輸送や、燃料デブリの長期保管のための、密封容器の役割も果たすように設計された。3タイプの収納缶が設計製作された(図4)。[1]
- Fuel canister: 大きな塊状デブリを直接回収、あるいは、別の小さな容器に回収した後で収納
- Knockout canister: 真空吸引システムにより、140ミクロンから燃料ペレット程度のサイズの粒子状デブリを回収し収納
- Filter canister: 真空吸引システムにより、Knockout canisterを通過した微粒子、水質浄化系を通過した微粒子、収納缶の脱水系を通過した微粒子、などを回収し収納
収納缶の設計は、輸送や取り出し工程にも影響した。主要な設計因子は、臨界安全性、構造強度、冷却水の放射線分解、圧力容器内での取り扱い容易性、燃料移送系や輸送キャスクにおけるサイズや重量の制限、INELでの貯蔵プールでの重量制限、収納缶のベント、であった。また、複数の単一目的の収納缶を設計するか、単一の多目的収納缶を設計するかが検討され、前者が選定された。NRCの輸送ライセンスに適合することも必要であった。
収納缶の設計では、当初の設計要求の外径13.35インチ(約32.5cm)から、14インチ(約34.3cm)に増やすことが検討された。これは、ホウ素遮蔽板の既製品サイズが14インチであったためだが、14インチ径では収納缶の水平断面が大きすぎ、取り扱いが難しくなるため、結局13.35インチに再設計された。しかし、小さい径の収納缶では、Knockout canisterの使用時に、流速を大きくする必要があり、小さい粒子の回収率が低下したのではないかと報告された。また、形状の歪んだデブリや上部端栓の回収には、収納缶の内径がもう少し大きい方がよかったと報告されている。いくつかの上部端栓は、小分けするのが難しく、収納缶ではなく、貯蔵用のドラムに収納された。
燃料デブリ取り出しにおける重要なレッスンとして、次第に明らかになってくる内部の状況に基づいて設計の自由度を確保することと、設計や安全評価に必要となるリードタイムの間のジレンマが指摘されている。収納缶についても、内部調査や、実際の使用経験に基づく、いくつかの改良が有効であった。1981年9月には、フルサイズの燃料集合体を格納できる収納缶が設計された。しかし、1983年8月の上部空洞ソナー調査とマッピングにより、フルスケールの燃料集合体はほとんど残留していないことが明らかになった。このことから、約4.3mのフルサイズ燃料集合体を収納できる当初の設計から、すでに承認されているM-130タイプの鉄道輸送キャスクを用いた経済的な構外輸送に適した、約3.3m長への設計変更が検討された。1984年6月に決定した仕様書では、収納缶の全長は約3.7mに増やされた。これは収納缶の製作業者に指定された最大長さに相当した。収納缶長を短くすることで、取り扱い性は向上したと報告されている。また、さらに全長を半分に縮めた収納缶も検討されたが、充填される重量の観点で実現されなかった。
収納缶の重量測定
3タイプの収納缶に、圧力容器内で燃料デブリを充填した後の重量測定が大きな課題となった。アイダホ国立研究所の収納缶貯蔵プールの制限により、乾燥重量として輸送できる収納缶一体の重量は約1270kg(2800ポンド)が上限であった。圧力容器内での正確な重量測定にはいくつもの課題があった。デブリの密度が大きくばらついている可能性、重量測定中の圧力容器内の運転条件、収納缶高さ位置が数段階で異なること、収納缶を取り付けたカルーセルが回転すること、など。以下の重量測定方法が採用された。
- Fuel canister: 収納缶をつかんで引き上げるツールを用いて、建屋クレーンで吊り下げて、必要に応じて重量測定。Fuel canisterはデブリ収納作業中に上部が開放されており、運転員は、収納缶内部の充填率を目視しつつ作業できた。したがって、重量測定は、収納缶ごとに1-2回で充分であった。
- Knockout canister: 真空吸引作業中に、knockout canister 接続モジュールを用いて重量測定された。このモジュールは、SWPの下面に取り付けられていた。
- Filter cvanister: 真空吸引作業中に、Filter canister重量測定システムを用いて、連続的に重量測定された。このシステムも、SWPから吊り下げられていた。
- 脱水後の収納缶: 3タイプの収納缶ともに、脱水処理された後に、再度重量測定が行われた。収納缶内部の脱水処理前後で、輸送トロリーによって冷却水から引き揚げ、ロードセルにより、測定誤差約15kg(35ポンド)で重量測定された。
収納缶の除染
収納缶の外面線量は極めて高く、TMI-2サイト内での手作業でのスメアは不可能であった。
Measures at TMI-2. In the fuel handling building at TMI-2, a decontamination spray ring with borated hot water was used to clean the loaded canister as it was being lifted from the spent fuel pool to be transferred to the shipping cask. The licensee conducted several experiments with an empty canister to improve the decontamination procedures. These included: (●) a high-pressure water spray ring system, which failed by a factor of 50 to meet the INEL criteria; (●) multiple soakings of a canister in hydrogen peroxide solutions followed by hydrogen peroxide solution spraying and hand wiping, which indicated that another factor of two for decontamination would be required; (●) hand wiping and cleaning with a bristle brush, which showed that hand wiping was the most effective but still did not meet the requirements; and (●) using a decontamination spray ring with cold water and heated water, which showed that heated water was best and came closest to meeting the requirements. o Measures at INEL. INEL was able to use the hot shop overhead manipulator to take smears of the external surface of a canister remotely as each was removed from a cask. INEL provided feedback on surface contamination levels for the licensee to improve its decontamination process. The problem was never completely eliminated but was significantly improved by the licensee’s efforts.
参考文献
[1] Three Mile Island Accident of 1979 Knowledge Management Digest, NUREG/KM-0001, Supplement 1, 2 and 3, USNRC, 2020.
[2] A.W. Marley, D.W. Akers and C.V. Mclsaac, Sampling and Examination Methods Used for Three Mile Island Unit 2, Nucl. Technol. 87 (1989) 845-856.